数列发散 left{ begin{aligned} “varepsilon—N”语言定义法/ 无界/ Cauchy收敛准则/ 子列收敛于不同极限 end{aligned} right.
{color{violet}{运用varepsilon—N语言}}
例1: a_{n}=frac{1}{n},ninN+,证明:lim_{n rightarrow infty}{a_{n}}=0.
证明:
{color{blue}{ forall varepsilon>0,exist N_{1}inN+,当n> N_{1},有left| a_{n}-0 right|<varepsilon. /只需取N_{1}=left[ frac{1}{varepsilon} right],即ngeqleft[ frac{1}{varepsilon} right]+1>frac{1}{varepsilon},从而得到frac{1}{n}<varepsilon. }}
{color{red}{普遍而言,对于一些通项表达式复杂的数列,需要借助放大法合理放大,再用定义证明。}}
例2: a_{n}=frac{n^{5}}{2^{n}},ninN+,证明:lim_{n rightarrow infty}{a_{n}}=0.
证明:
{color{blue}{ 由2^{n}=1+tbinom{n}{1}+tbinom{n}{2}+…+tbinom{n}{n},当n>6时有2^{n}>tbinom{n}{6},/ thereforefrac{n^{5}}{2^{n}}<frac{n^{5}times6!}{n(n-1)(n-2)(n-3)(n-4)(n-5)}<frac{n^{4}times6!}{(n-5)^{5}},/ 当n>10时用(n-5)^{2}>(frac{n}{2})^{5}进一步放大,即frac{n^{5}}{2^{n}}<frac{10^{5}}{n},/ therefore,只需证forallvarepsilon>0,exist N_{1}inN+,当n>N_{1},/为了使left| frac{10^{5}}{n}right|<varepsilon,只需取N_{1}=maxleft{ 10,left[ frac{10^{5}}{varepsilon} right] right}. }}
格式大概如下:{color{olive}{left[ 1 right]a_{ n}单调增(减)./ left[ 2 right]a_{n}leq A}}
格式大致如下:{color{olive}{left[ 1 right]forall varepsilon>0,exists N_{1}inN+,forall pinN+/ left[ 2 right]当n>N_{1,}left| a_{n+p} -a_{n}right|<varepsilon. /left[ 3 right] 只需取N_{1}=f(varepsilon)即可. }}
例3: 设数列left{ b_{n} right}有界,令a_{n}=frac{b_{1}}{1cdot2}+frac{b_{2}}{2cdot3}+frac{b_{3}}{3cdot4}+…+frac{b_{n}}{ncdotleft( n+1right)},ninN+ ,证明:left{ a_{n} right}收敛.
证明: {color{blue}{ 取常数M>0,使得left| b_{n} right|leq M./ forall varepsilon>0,exists N_{1}inN+ ,forall pinN+/ 当n>N_{1} , left| a_{n+p}-a_{n} right|leq Mleft[ frac{1}{(n+1)(n+2)}+ frac{1}{(n+2)(n+3)}+…+frac{1}{(n+p)(n+p+1)}right]/= M left[ frac{1}{(n+1)}-frac{1}{(n+p+1)} right]<frac{M}{n+1} 只需取N_{1}=left[ frac{M}{varepsilon} right] 即可. }}
格式大致如下:{color{olive}{ left[ 1 right]forall ninN+,a_{n}leq b_{n}leq c_{n}/ left[ 2 right]lim_{n rightarrow infty}{a_{n}}=lim_{n rightarrow infty}{c_{n}}=A/ left[ 3right] therefore lim_{n rightarrow infty}{b_{n}}=A. }}
例4:
证明: lim_{m rightarrow infty}{(left| a_{1} right|^{m}+left| a_{2} right|^{m}+left| a_{3} right|^{m}+…+left| a_{n} right|^{m})^{frac{1}{m}}}=maxleft{ left| a_{1} right|,left| a_{2} right|,left| a_{3} right|…left| a_{n} right|right},minN+ .
证明: {color{blue}{ left[ 1 right]若maxleft{ left| a_{1} right|,left| a_{2} right|,left| a_{3} right|…left| a_{n} right|right}=0,/则a_{1}=a_{2}=…=a_{n}=0Rightarrow(0^{m}+0^{m}+…+0^{m})^{frac{1}{m}}=0,即lim_{n rightarrow infty}{0}=0,成立。/ left[ 2 right]若maxleft{ left| a_{1} right|,left| a_{2} right|,left| a_{3} right|…left| a_{n} right|right}=h>0./ 则(h^{m}+0^{m}+0^{m}+…+0^{m})^{frac{1}{m}}leq (left| a_{1} right|^{m}+left| a_{2} right|^{m}+left| a_{3} right|^{m}+…+left| a_{n} right|^{m})^{frac{1}{m}}leq(h^{m}+h^{m}+…+h^{m})^{frac{1}{m}},/ 即 hleq (left| a_{1} right|^{m}+left| a_{2} right|^{m}+left| a_{3} right|^{m}+…+left| a_{n} right|^{m})^{frac{1}{m}}leq h(n)^{frac{1}{m}}/ 又lim_{m rightarrow infty}{h}=h=lim_{m rightarrow infty}{h(n)^{frac{1}{m}}},/ therefore 由夹逼准则 lim_{m rightarrow infty}{(left| a_{1} right|^{m}+left| a_{2} right|^{m}+left| a_{3} right|^{m}+…+left| a_{n} right|^{m})^{frac{1}{m}}}=h=maxleft{ left| a_{1} right|,left| a_{2} right|,left| a_{3} right|…left| a_{n} right|right}. }}
1、{color{violet}{frac{infty}{infty}型Stolz定理:}} 设left{ a_{n} right},left{ b_{n} right}为两个数列,且left{ b_{n} right}严格递增趋于+infty,若lim_{n rightarrow infty}{frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}}=A. /则lim_{n rightarrow infty}{frac{a_{n}}{b_{n}}}=A(A可以为实数,也可以为+infty或-infty,但不能是infty).
2、{color{violet}{frac{0}{0}型的Stolz定理:}} 设left{ a_{n} right},left{ b_{n} right}是两个收敛于0的数列,且left{ b_{n} right}是严格递减数列,若lim_{n rightarrow infty}{frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}}=A. /则lim_{n rightarrow infty}{frac{a_{n}}{b_{n}}}=A.(A可以为实数,也可以是+infty或-infty,但不能为infty).
{color{red}{ 注:1^{。}两种类型的Stolz定理的逆命题皆不成立。 /2^{。}两种类型的Stolz定理可以看作是离散型的L'Hospital法则。 }}
例5:求极限: lim_{n rightarrow infty}{(n!)^{frac{1}{n^{2}}}}.
解: {color{blue}{ lim_{n rightarrow infty}{(n!)^{frac{1}{n^{2}}}}=e^{lim_{n rightarrow infty}{frac{ln1+ln2+…+lnn}{n^{2}}}},由于a_{n}=ln1+ln2+…+lnn,b_{n}=n^{2},b_{n}严格增趋于+infty/ therefore 只需算lim_{n rightarrow infty}{frac{a_{n}}{b_{n}}} =lim_{n rightarrow infty}{frac{lnn}{2n-1}}.易证lim_{n rightarrow infty}{frac{lnn}{2n-1}}=0./ Rightarrowlim_{n rightarrow infty}{(n!)^{frac{1}{n^{2}}}}=e^{0}=1 }}
(在数列级数再详细讲述,这里不作赘述。)
Toeplitz定理:
设n,kinN+,t_{nk}geq0且sum_{k=1}^{n}{t_{nk}}=0,若lim_{n rightarrow infty}{a_{n}}= a,则必有lim_{n rightarrow infty}{sum_{k=1}^{n}{t_{nk}a_{k}}}=a.
(同样在数列级数再详细讲述。)
子列: 设left{ a_{n} right}是一个数列,而n_{1}<n_{2}<n_{3}<…<n_{k}<n_{k+1}<…是一列严格单调增加的正整数,/则a_{n_{1}},a_{n_{2}},a_{n_{3}},…,a_{n_{k}},…也形成一个数列,称为数列left{ a_{n} right}的子列,记作left{ a_{n_{k}}right}.
数列的极限点就是数列收敛子列的极限(约定:若存在正(负)无穷大量的子列,则将 +infty(-infty) 也作为极限点。
数列left{ x_{n} right}的上极限记为varlimsup _{n rightarrow infty}x_{n},下极限记为varliminf _{n rightarrow infty}x_{n}
{color{violet}{运用G—N语言}}
格式大致如下:{color{olive}{ left[ 1 right]对于forall G>0 / left[ 2 right]exists N_{1}inN+,当n>N_{1},/ left[ 3 right]为了使left| a_{n}-a right|>G,则只需取N_{1}=f(G) }}
例7:证明: lim_{n rightarrow infty}{frac{n^{3}+n-7}{n+3}}=+infty.
证明:
{color{blue}{ 不妨令n>3,则frac{n^{3}+n-7}{n+3}>frac{frac{1}{2}n^{3}}{2n}=frac{1}{4}n^{2}>frac{1}{4}n./ 对于forall G>0,exists N_{1}inN+,当n>N_{1},为了使left| frac{1}{4}n right|>G,只需取N_{1}=maxleft{ 3,left[ 4G right]right}即可。 }}
例8: 设S_{n}=1+frac{1}{2}+…+frac{1}{n},ninN+ ,证明:数列left{ S_{n} right}发散.
证明:(Oresme)
{color{blue}{ 利用 frac{1}{n+1}+ frac{1}{n+2}+ frac{1}{n+3}+…+ frac{1}{n+n}>ncdotfrac{1}{2n}=frac{1}{2}. / S_{2}=1+frac{1}{2},S_{4}=S_{2}+frac{1}{3}+frac{1}{4}>S_{2}+2cdot(frac{1}{4})=2. / S_{8}>S_{4}+4cdot(frac{1}{8})>2.5. / 由数学归纳法易得:S_{2^{n}}geq1+frac{n}{2}.therefore S_{n}无上界,因此发散. }}
格式大致如下:{color{olive}{left[ 1 right]找到一个 varepsilon>0,exists N_{1}inN+,forall pinN+/ left[ 2 right]当n>N_{1,}left| a_{n+p} -a_{n}right|<varepsilon不成立. }}
例题同例8
证明:
{color{blue}{ S_{2n}-S_{n}=frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+…+frac{1}{n+n}geq ncdotfrac{1}{2n}=frac{1}{2}. / therefore 取varepsilon=frac{1}{2},exists N_{1}inN+,/当n>N_{1},取p=n,left| S_{n+p}-S_{n} right|<varepsilon=frac{1}{2}不成立. / thereforeleft{ S_{n} right}不是基本列,所以S_{n}发散. }}
{color{violet}{构造出两个收敛于不同数的子列。}}
例9: 证明数列left{ sinx right}发散.
证明: {color{blue}{在区间left[ 2kpi+frac{pi}{4},2kpi+frac{3pi}{4} right]取一个正整数n_{k}^{'},得到一个子列left{ sinn_{k}^{'} right},如果收敛,其极限一定不小于frac{sqrt{2}}{2}. / 在区间left[ (2k+1)pi,(2k+2)pi right]取一个正整数n_{k}^{''},得到第二个子列left{ sinn_{k}^{''} right},如果收敛,其极限一定不大于0. / thereforeleft{ sinn right}是发散数列.}}
上一篇
下一篇