写在前面
今天我们来聊聊 Synchronized 里面的各种锁:偏向锁、轻量级锁、重量级锁,以及三个锁之间是如何进行锁膨胀的。先来一张图来总结
提前了解知识
锁的升级过程
锁的状态总共有四种:无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁(但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级)
Java 对象头
因为在Java中任意对象都可以用作锁,因此必定要有一个映射关系,存储该对象以及其对应的锁信息(比如当前哪个线程持有锁,哪些线程在等待)。一种很直观的方法是,用一个全局map,来存储这个映射关系,但这样会有一些问题:需要对map做线程安全保障,不同的synchronized之间会相互影响,性能差;另外当同步对象较多时,该map可能会占用比较多的内存。所以最好的办法是将这个映射关系存储在对象头中,因为对象头本身也有一些hashcode、GC相关的数据,所以如果能将锁信息与这些信息共存在对象头中就好了。
在JVM中,对象在内存中除了本身的数据外还会有个对象头,对于普通对象而言,其对象头中有两类信息:mark word和类型指针。另外对于数组而言还会有一份记录数组长度的数据。类型指针是指向该对象所属类对象的指针,mark word用于存储对象的HashCode、GC分代年龄、锁状态等信息。在32位系统上mark word长度为32bit,64位系统上长度为64bit。为了能在有限的空间里存储下更多的数据,其存储格式是不固定的,在32位系统上各状态的格式如下:
可以看到锁信息也是存在于对象的mark word中的。当对象状态为偏向锁(biasable)时,mark word存储的是偏向的线程ID;当状态为轻量级锁(lightweight locked)时,mark word存储的是指向线程栈中Lock Record的指针;当状态为重量级锁(inflated)时,为指向堆中的monitor对象的指针。
全局安全点(safepoint)
safepoint这个词我们在GC中经常会提到,简单来说就是其代表了一个状态,在该状态下所有线程都是暂停的。
偏向锁
一个线程反复的去获取/释放一个锁,如果这个锁是轻量级锁或者重量级锁,不断的加解锁显然是没有必要的,造成了资源的浪费。于是引入了偏向锁,偏向锁在获取资源的时候会在资源对象上记录该对象是偏向该线程的,偏向锁并不会主动释放,这样每次偏向锁进入的时候都会判断该资源是否是偏向自己的,如果是偏向自己的则不需要进行额外的操作,直接可以进入同步操作。
偏向锁获取过程
偏向锁的释放
偏向锁的撤销在上述第四步骤中有提到。偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点safepoint,它会首先暂停拥有偏向锁的线程A,然后判断这个线程A,此时有两种情况:
批量重偏向
为什么有批量重偏向
当只有一个线程反复进入同步块时,偏向锁带来的性能开销基本可以忽略,但是当有其他线程尝试获得锁时,就需要等到safe point时将偏向锁撤销为无锁状态或升级为轻量级/重量级锁。这个过程是要消耗一定的成本的,所以如果说运行时的场景本身存在多线程竞争的,那偏向锁的存在不仅不能提高性能,而且会导致性能下降。因此,JVM中增加了一种批量重偏向/撤销的机制。
批量重偏向的原理
轻量级锁
轻量级锁的获取过程
在代码进入同步块的时候,如果同步对象锁状态为偏向状态(就是锁标志位为“01”状态,是否为偏向锁标志位为“1”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝。官方称之为 Displaced Mark Word(所以这里我们认为Lock Record和 Displaced Mark Word其实是同一个概念)。这时候线程堆栈与对象头的状态如图所示:
拷贝对象头中的Mark Word复制到锁记录中。
拷贝成功后,虚拟机将使用CAS操作尝试将对象头的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向对象头的mark word。如果更新成功,则执行步骤(4),否则执行步骤(5)。
如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如下所示:
如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,现在是重入状态,那么设置Lock Record第一部分(Displaced Mark Word)为null,起到了一个重入计数器的作用。下图为重入三次时的lock record示意图,左边为锁对象,右边为当前线程的栈帧,重入之后然后结束。接着就可以直接进入同步块继续执行。
如果不是说明这个锁对象已经被其他线程抢占了,说明此时有多个线程竞争锁,那么它就会自旋等待锁,一定次数后仍未获得锁对象,说明发生了竞争,需要膨胀为重量级锁。
轻量级锁的解锁过程
重量级锁
重量级锁加锁和释放锁机制
调用omAlloc分配一个ObjectMonitor对象,把锁对象头的mark word锁标志位变成 “10 ”,然后在mark word存储指向ObjectMonitor对象的指针
ObjectMonitor中有两个队列,_WaitSet和_EntryList,用来保存ObjectWaiter对象列表(每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner 区域并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1,若线程调用wait()方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入WaitSet集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示
Synchronized同步代码块的底层原理
同步代码块的加锁、解锁是通过 Javac 编译器实现的,底层是借助monitorenter和monitorerexit,为了能够保证无论代码块正常执行结束 or 抛出异常结束,都能正确释放锁,Javac 编译器在编译的时候,会对monitorerexit进行特殊处理,举例说明:
public class Hello {
public void test() {
synchronized (this) {
System.out.println("test");
}
}
}
<< · Back Index ·>>
上一篇