导读:数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础。没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据。脏数据一般是指不符合要求以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括:缺失值、异常值、不一致的值、重复数据及含有特殊符号(如#、¥、*)的数据。
本文将主要对数据中的缺失值、异常值和一致性进行分析。
01 缺失值分析
数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果不准确。下面从缺失值产生的原因及影响等方面展开分析。
1. 缺失值产生的原因
缺失值产生的原因主要有以下3点:
2. 缺失值的影响
缺失值会产生以下的影响:
3. 缺失值的分析
对缺失值的分析主要从以下两方面进行:
02 异常值分析
异常值分析是检验数据是否有录入错误,是否含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地将异常值放入数据的计算分析过程中,会对结果造成不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数值明显偏离其他的观测值。异常值也称为离群点,异常值分析也称为离群点分析。
1. 简单统计量分析
在进行异常值分析时,可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理范围。如客户年龄的最大值为199岁,则判断该变量的取值存在异常。
2. 3σ原则
如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为P(|x-μ|>3σ)≤0.003,属于极个别的小概率事件。
如果数据不服从正态分布,也可以用远离平均值的标准差倍数来描述。
3. 箱型图分析
箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于QU+1.5IQR的值。
箱型图依据实际数据绘制,对数据没有任何限制性要求,如服从某种特定的分布形式,它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会严重扰动四分位数,所以异常值不能对这个标准施加影响。
由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。
▲图3-1 箱型图检测异常值
餐饮系统中的销量数据可能出现缺失值和异常值,例如表3-1中数据所示。
▲表3-1 餐饮日销额数据示例
分析餐饮系统日销额数据可以发现,其中有部分数据是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率等。
在Python的pandas库中,只需要读入数据,然后使用describe()方法即可查看数据的基本情况,如代码清单3-1所示。
import pandas as pd
catering_sale = '../data/catering_sale.xls' # 餐饮数据
data = pd.read_excel(catering_sale, index_col='日期')
# 读取数据,指定“日期”列为索引列
print(data.describe())
<< · Back Index ·>>
下一篇
6月10日,是我國香港樂壇傑出的音樂人黃傢駒的生日,為瞭紀念這位天才,我在這裡將我的油畫連環畫代表作《光輝歲月—beyond樂...