雷诺方程是Navier-Stokes方程的特殊形式。
对于一般流体润滑问题,以上假设(1)~假设(4)基本上是正确的;而假设(5)~假设(8)是为简化而引入的,只能有条件地使用,在某些工况下必须加以修正。
采用微元体分析方法。
主要步骤:
x方向的受力:
微元体X方向的受力
这个微元体只受其他流体微元给它的压力p和由流体黏性造成的切应力tau作用。
三个方向的速度分量u,v,w在Z方向的变化率,dfrac{partial u}{partial z}和dfrac{partial v}{partial z}比较大,而dfrac{partial w}{partial z}则非常小(可以认为在膜厚方向,即Z方向的速度沿着Z方向基本没有变化)。
由X方向的受力平衡,可得:
p mathrm{d} y mathrm{d} z+left(tau+dfrac{partial tau}{partial z} mathrm{d} zright) mathrm{d} x mathrm{d} y=left(p+dfrac{partial p}{partial x} mathrm{d} xright) mathrm{d} y mathrm{d} z+tau mathrm{d} x mathrm{d} y /
将括号里的项展开,并两边同除mathrm{d} xmathrm{d} ymathrm{d} z即可得:
dfrac{partial p}{partial x} = dfrac{partial tau}{partial z} /
由于假设(5)和假设(6),流体满足牛顿黏性定律,tau=eta dfrac{partial u}{partial z},故
dfrac{partial p}{partial x}=dfrac{partial}{partial z}left( eta dfrac{partial u}{partial z}right) tag{1}
再由Y方向的力平衡,同理也可得:
dfrac{partial p}{partial y}=dfrac{partial}{partial z}left( eta dfrac{partial v}{partial z}right) /
由假设(3),有
dfrac{partial p}{partial z}=0 /
将式(1)直接对z进行积分两次,可得:
begin{aligned} eta dfrac{partial u}{partial z}&=int dfrac{partial p}{partial x} mathrm{~d} z=dfrac{partial p}{partial x} z+C_{1} / eta u&=intleft(dfrac{partial p}{partial x} z+C_{1}right) mathrm{d} z=dfrac{partial p}{partial x} dfrac{z^{2}}{2}+C_{1} z+C_{2} end{aligned} /
再用边界条件来确定C_1和C_2。由假设(2),界面上的流体速度等于表面速度,设固体表面的速度为U_0和U_h,即当z=0时,u=U_0,当z=h时,u=U_h,可得:
C_{2}=eta U_{0}, quad C_{1}=left(U_{h}-U_{0}right) dfrac{eta}{h}-dfrac{partial p}{partial x} dfrac{h}{2} /
因此,润滑膜中任意点沿X方向的流速为:
u=dfrac{1}{2 eta} dfrac{partial p}{partial x}left(z^{2}-z hright)+left(U_{h}-U_{0}right) dfrac{z}{h}+U_{0} /
同理,可以得到润滑膜中任意点沿Y方向的流速为:
v=dfrac{1}{2 eta} dfrac{partial p}{partial y}left(z^{2}-z hright)+left(V_{h}-V_{0}right) dfrac{z}{h}+V_{0} /
流速组成
上表示流速u沿Z向的分布,它由3部分组成:第1项按抛物线分布,表示由dfrac{partial p}{partial x}引起的流动,故称“压力流动”;第2项按线性(三角形)分布,代表由于两表面的相对滑动速度(U_h-U_0)引起的流动,称为“速度流动”;第3项是常数,表示整个润滑膜以速度U_0运动,沿膜厚方向即Z向各点的速度相同。
流体力学连续方程(质量守恒定律):
dfrac{partial rho}{partial t}+left[dfrac{partial(rho u)}{partial x}+dfrac{partial(rho v)}{partial y}+dfrac{partial(rho w)}{partial z}right]=0 tag{2}
将式(2)沿膜厚Z方向进行积分,有:
int_{0}^{h(x, y)} dfrac{partial rho}{partial t} mathrm{~d} z+int_{0}^{h(x, y)} dfrac{partial(rho u)}{partial x} mathrm{~d} z+int_{0}^{h(x, y)} dfrac{partial(rho v)}{partial y} mathrm{~d} z+int_{0}^{h(x, y)} dfrac{partial(rho w)}{partial z} mathrm{~d} z=0 tag{3}
由于被积函数关于各个变量均连续可微,所以可以将式(3)的积分、微分次序交换:
dfrac{partial }{partial t}int_{0}^{h(x, y)} rho mathrm{~d} z+ dfrac{partial}{partial x}int_{0}^{h(x, y)} (rho u) mathrm{~d}z+dfrac{partial}{partial y}int_{0}^{h(x, y)} (rho v) mathrm{~d} z+dfrac{partial}{partial z} int_{0}^{h(x, y)} (rho w)mathrm{~d} z = 0 /
让我们一项一项来查看,第一项积分后:
dfrac{partial }{partial t}int_{0}^{h(x, y)} rho mathrm{~d} z=dfrac{partial }{partial t}(rho h) /
将速度u的表达式代入第二项,进行积分:
begin{aligned} dfrac{partial}{partial x}int_{0}^{h(x, y)} (rho u) mathrm{~d}z &= dfrac{partial}{partial x}int_{0}^{h(x, y)} left(rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial x}left(z^{2}-z hright)+left(U_{h}-U_{0}right) dfrac{z}{h}+U_{0}right] right) mathrm{~d}z / &= dfrac{partial}{partial x} rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial x}left(dfrac{z^{3}}{3}-dfrac{z^2}{2} hright)+left(U_{h}-U_{0}right) dfrac{z^2}{2h}+U_{0}z right]bigg|_{0}^{h(x, y)} / &=dfrac{partial}{partial x} rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial x}left(dfrac{h ^{3}}{3}-dfrac{h ^2}{2} hright)+left(U_{h}-U_{0}right) dfrac{h ^2}{2h}+U_{0}h right] / &=-dfrac{partial}{partial x} left(dfrac{rho h^3}{12eta}dfrac{partial p}{partial x} right)+dfrac{rho h}{2}dfrac{partialleft(U_h-U_0 right)}{partial x}+dfrac{ (U_h-U_0)}{2}dfrac{partial (rho h)}{partial x} + rho hdfrac{partial U_0}{partial x}+U_0dfrac{partial (rho h)}{partial x} / &=-dfrac{partial}{partial x} left(dfrac{rho h^3}{12eta}dfrac{partial p}{partial x} right)+dfrac{rho h}{2}dfrac{partialleft(U_h+U_0 right)}{partial x}+dfrac{ (U_h+U_0)}{2}dfrac{partial (rho h)}{partial x} end{aligned} /
第三项同理,积分后可得:
begin{aligned} dfrac{partial}{partial y}int_{0}^{h(y, y)} (rho v) mathrm{~d} z &= dfrac{partial}{partial y}int_{0}^{h(y, y)} left(rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial y}left(z^{2}-z hright)+left(V_{h}-V_{0}right) dfrac{z}{h}+V_{0}right] right) mathrm{~d}z / &= dfrac{partial}{partial y} rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial y}left(dfrac{z^{3}}{3}-dfrac{z^2}{2} hright)+left(V_{h}-V_{0}right) dfrac{z^2}{2h}+V_{0}z right]bigg|_{0}^{h(y, y)} / &=dfrac{partial}{partial y} rho left[ dfrac{1}{2 eta} dfrac{partial p}{partial y}left(dfrac{h ^{3}}{3}-dfrac{h ^2}{2} hright)+left(V_{h}-V_{0}right) dfrac{h ^2}{2h}+V_{0}h right] / &=-dfrac{partial}{partial y} left(dfrac{rho h^3}{12eta}dfrac{partial p}{partial y} right)+dfrac{rho h}{2}dfrac{partialleft(V_h-V_0 right)}{partial y}+dfrac{ (V_h-V_0)}{2}dfrac{partial (rho h)}{partial y} + rho hdfrac{partial V_0}{partial y}+V_0dfrac{partial (rho h)}{partial y}/ &=-dfrac{partial}{partial y} left(dfrac{rho h^3}{12eta}dfrac{partial p}{partial y} right)+dfrac{rho h}{2}dfrac{partialleft(V_h+V_0 right)}{partial y}+dfrac{ (V_h+U_0)}{2}dfrac{partial (rho h)}{partial y} end{aligned} /
第四项积分后可得:
dfrac{partial}{partial z} int_{0}^{h(x, y)} (rho w)mathrm{~d} z= dfrac{partial}{partial z} (rho wh) approx 0 /
将每项积分代入式(3)并两边同乘12,整理后可得:
begin{aligned} dfrac{partial}{partial x}left(dfrac{rho h^{3}}{eta} dfrac{partial p}{partial x}right)+dfrac{partial}{partial y}left(dfrac{rho h^{3}}{eta} dfrac{partial p}{partial y}right)=& 6left(U_{0}+U_{h}right) dfrac{partial(rho h)}{partial x}+6left(V_{0}+V_{h}right) dfrac{partial(rho h)}{partial y}+/ & 6 rho h dfrac{partialleft(U_{0}+U_{h}right)}{partial x}+6 rho h dfrac{partialleft(V_{0}+V_{h}right)}{partial y}+12 dfrac{partial(rho h)}{partial t} end{aligned} tag{4}
式(4)即为一般形式的雷诺方程。
若令U=U_0+U_h,V=V_0+V_h,并认为流体密度不随时间变化(但可以随着位置而变化),则雷诺方程可以写成
dfrac{partial}{partial x}left(dfrac{rho h^{3}}{eta} dfrac{partial p}{partial x}right)+dfrac{partial}{partial y}left(dfrac{rho h^{3}}{eta} dfrac{partial p}{partial y}right)=6left[ dfrac{partial}{partial x}(Urho h)+dfrac{partial}{partial y}(Vrho h)+2rho(w_h-w_0)right] /
用于不可压缩流体润滑计算的雷诺方程普遍形式为:
dfrac{partial}{partial x}left(dfrac{h^{3}}{12 eta} dfrac{partial p}{partial x}right)+dfrac{partial}{partial y}left(dfrac{h^{3}}{12 eta} dfrac{partial p}{partial y}right)=dfrac{1}{2} dfrac{partial(h U)}{partial x}+dfrac{1}{2} dfrac{partial(h V)}{partial y}+dfrac{partial h}{partial t} /
写作矢量形式:
nablacdot left( dfrac{h^3}{12eta} nabla pright)=dfrac{1}{2}nabla cdot (h mathbf{U})+dot{h} /
其中,nabla = mathbf{i}dfrac{partial}{partial x}+mathbf{j}dfrac{partial}{partial y};mathbf{U}为速度矢量;dot{h}=dfrac{partial h}{partial t}。
nabla = mathbf{i}dfrac{partial}{partial x}+mathbf{j}dfrac{partial}{partial y} = begin{pmatrix} 1 / 0 end{pmatrix}dfrac{partial}{partial x}+ begin{pmatrix} 0 / 1 end{pmatrix}dfrac{partial}{partial y} = begin{pmatrix} dfrac{partial}{partial x} / dfrac{partial}{partial y} end{pmatrix} /mathbf{U}=begin{pmatrix} U/ V end{pmatrix} /nabla p = begin{pmatrix} dfrac{partial p}{partial x}/ dfrac{partial p}{partial y} end{pmatrix} /
则由向量点乘可得:
nablacdot left( dfrac{h^3}{12eta} nabla pright)= begin{pmatrix} dfrac{partial}{partial x} / dfrac{partial}{partial y} end{pmatrix} cdot left(dfrac{h^3}{12eta} begin{pmatrix} dfrac{partial p}{partial x}/ dfrac{partial p}{partial y} end{pmatrix} right) = dfrac{partial}{partial x}left(dfrac{h^{3}}{12 eta} dfrac{partial p}{partial x}right)+dfrac{partial}{partial y}left(dfrac{h^{3}}{12 eta} dfrac{partial p}{partial y}right) /
同理
dfrac{1}{2}nabla cdot (h mathbf{U})=dfrac{1}{2} begin{pmatrix} dfrac{partial}{partial x} / dfrac{partial}{partial y} end{pmatrix} cdot left(h begin{pmatrix} U/ V end{pmatrix} right) = dfrac{1}{2} dfrac{partial(h U)}{partial x}+dfrac{1}{2} dfrac{partial(h V)}{partial y} /