笔记:因式分解的拆项与添项法

因式分解的定义

多项式的因式分解是代数恒等变形的基本形式之一。把一个多项式表示成几个整式乘积的形式。

常用方法

提取公因式法;运用公式法;可化为“ x^2+(a+b)x+ab ”型的二次三项式的分解法,分组分解法;二次三项式的”十字相乘法“。

拆项与添项

  • 拆项:把多项式中的某项拆成两项或几项代数和的方法
  • 添项:在多项式中添加上两个仅符号相反的项

例1 分组后使各组之间有公因式而进行拆项

  1. x^3+9x^2+26x+24
  2. a^2b+b^2c+c^2a-ab^2-bc^2-ca^2

解:

  1. 解法:

解法1

原式

=(x^3+2x^2)+(7x^2+14x)+(12x+24)

=x^2(x+2)+7x(x+2)+12(x+2)

=(x+2)(x^2+7x+12)

=(x+2)(x+3)(x+4)

解法2

原式

=(x^3+5x^2+6x)+(4x^2+20x+24)

=x(x+2)(x+3)+4(x+2)(x+3)

=(x+2)(x+3)(x+4)

解法3

原式

=(x^3+8)+(9x^2+26x+16)

=(x+2)(x^2-2x+4)+(x+2)(9x+8)

=(x+2)(x^2+7x+12)

=(x+2)(x+3)(x+4)

2. 解法:

原式

=ab(a-b)+bc(b-c)+ca(c-a)

=ab(a-b)+bc[(b-a)+(a-c)]+ca(c-a)

=ab(a-b)-bc(a-b)+bc(a-c)-ca(a-c)

=b(a-b)(a-c)+c(a-c)(b-a)

=(a-b)(a-c)(b-c)

例2 拆项分组后利用公式

  1. (m^2-1)(n^2-1)+4mn
  2. x^3+y^3+z^3-3xyz
  3. 2a^2b^2+2a^2c^2+ab^2c^2-a^4-b^4-c^4

解题思路:拆项或添项后再利用公式

1.解:

原式

=m^2n^2-m^2-n^2+1+4mn

=(m^2n^2+2mn+1)-(m^2-2mn+n^2)

=(mn+1)^2-(m-n)^2

=(mn+m-n+1)(mn-m+n+1)

2.解:

原式

=x^3+3x^2y+3xy^2+y^3+z^3-3xy(x+y)-3xyz

=(x+y)^3+z^3-3xy(x+y+z)

=(x+y+z)[(x+y)^2-(x+y)z+z^2]-xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)

3.解:

原式

=4a^2b^2-(a^4+b^4+c^4-2a^2c^2-2b^2c^2+2a^2b^2)

=4a^2b^2-(a^2+b^2-c^2)^2

=(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)

=[(a+b)^2-c^2][c^2-(a-b)^2]

=(a+b+c)(a+b-c)(c+a-b)(c-a+b)

发表回复

相关推荐

女生生理期來瞭可以跑步嗎?

這是我回答知乎網友的提問,同步發文章。文章標題就是問題,以下是我回答的內容:不能一概而論,要根據自己具體情況來決定,...

· 22秒前

比爱你还上瘾的 是「苦桃」的甜

味道会产生记忆联想,有时候当我闻到某种香味,就会想起某一段时光,或是某一个人。我的第一款香水,就是情人节收到的礼物, ...

· 2分钟前

时间频度、时间复杂度、多项式时间

时间频度 定义:定量描述了一个算法的运行时间 解毒: include<...> x=91; y=100; while(y>0) if(x>100) { ...

· 2分钟前

折弯系数、K因子使用方法

SW里,为什么要用折弯系数,而不用扣除;什么情况下用K因子。

· 5分钟前

【轻库娘的灵魂拷问】对谈桜日梯子:年上与年下的反差萌

采访:二爷、 @银翼 、 @羽毛 采访协力:天水冥、早安 轻之文库VOL.1(以下简称轻库):樱日老师好,感谢您这次来参加广州 ...

· 6分钟前