高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。高并发相关常用的一些指标有 响应时间(Response Time),吞吐量(Throughput),每秒查询率 QPS(Query Per Second),并发用户数 等。
故障监测 与 排除、消除达点故障 , 互备和容灾
高可用注意如果使用单机,一旦挂机将导致服务不可用,可以使用集群来代替单机,一台服务器挂了,还有其他后备服务器能够顶上。或者使用分布式部署项。比如现在redis的高可用的集群方案有: Redis单副本,Redis多副本(主从),Redis Sentinel(哨兵),Redis Cluster,Redis自研。
高性能是指程序处理速度非常快,所占内存少,cpu占用率低。高性能的指标经常和高并发的指标紧密相关,想要提高性能,那么就要提高系统发并发能力,两者互相捆绑在一起。应用性能优化的时候,对于计算密集型和IO密集型还是有很大差别,需要分开来考虑。还有可以增加服务器的数量,内存,IO等参数提升系统的并发能力和性能,但不要浪费资源,要考虑硬件的使用率最高才能发挥到极致。
避免因为IO阻塞让CPU闲置,导致CPU的浪费避免多线程间增加锁来保证同步,导致并行系统串行化免创建、销毁、维护太多进程、线程,导致操作系统浪费资源在调度上
互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up) 与 水平扩展(Scale Out)。
提升单机处理能力。垂直扩展的方式又有两种:
在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用 “增强单机硬件性能” 的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而 “增强单机硬件性能” 往往是最快的方法。
不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。
只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。
反向代理层的水平扩展,是通过 DNS 轮询 实现的:DNS Server 对于一个域名配置了多个解析 IP,每次 DNS 解析请求来访问 DNS Server,会轮询返回这些 IP。
当 Nginx 成为瓶颈的时候,只要增加服务器数量,新增 Nginx 服务的部署,增加一个外网 IP,就能扩展反向代理层的性能,做到理论上的无限高并发。
站点层的水平扩展,是通过 Nginx 实现的。通过修改 nginx.conf
,可以设置多个 Web 后端。
当 Web 后端成为瓶颈的时候,只要增加服务器数量,新增 Web 服务的部署,在 Nginx 配置中配置上新的 Web 后端,就能扩展站点层的性能,做到理论上的无限高并发。
服务层的水平扩展,是通过 服务连接池 实现的。
站点层通过 RPC Client 调用下游的服务层 RPC Server 时,RPC Client 中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在 RPC Client 处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。
在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。
每一个数据服务,存储一定范围的数据
优点:
缺点:
每一个数据库,存储某个 key 值 hash 后的部分数据
优点:
缺点:
这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。
通过水平拆分扩展数据库性能
通过主从同步读写分离扩展数据库性能
記者:Lydia來源:BuzzFeed咳咳,各位L社的小夥伴們,今天要開車瞭,大傢請坐穩……幾天前,一位外國女網友在推特上分享瞭媽媽...